Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 351
Filtrar
1.
Am J Physiol Endocrinol Metab ; 325(5): E621-E623, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819195

RESUMO

Gliflozins provide a breakthrough in the management of type-2 diabetes. In addition to facilitating normoglycemia, these sodium-glucose cotransporter type 2 (SGLT2) inhibitors attenuate obesity, hypertension, dyslipidemia, and fluid retention, reduce cardiovascular morbidity, retard the progression of renal dysfunction, and improve survival. The administration of gliflozins also triggers erythropoietin (EPO) production, with the consequent induction of reticulocytosis and erythrocytosis. The mechanism(s) by which gliflozins induce erythropoiesis is a matter of debate. Whereas the canonical pathway of triggering EPO synthesis is through renal tissue hypoxia, it has been suggested that improved renal oxygenation may facilitate EPO synthesis via noncanonical trails. The latter proposes that recovery of peritubular interstitial fibroblasts producing erythropoietin (EPO) is responsible for enhanced erythropoiesis. According to this hypothesis, enhanced glucose/sodium reuptake by proximal tubules in uncontrolled diabetes generates cortical hypoxia, with injury to these cells. Once transport workload declines with the use of SGLT2i, they recover and regain their capacity to produce EPO. In this short communication, we argue that this hypothesis is incorrect. First, there is no evidence for interstitial cell injury related to hypoxia in the diabetic kidney. Tubular, rather than interstitial cells are prone to hypoxic injury in the diabetic kidney. Moreover, hypoxia, not normoxia, stimulates EPO synthesis by hypoxia-inducible factors (HIFs). Hypoxia regulates EPO synthesis as it blocks HIF prolyl hydroxylases (that initiate HIF alpha degradation), hence stabilizing HIF signals, inducing HIF-dependent genes, including EPO located in the deep cortex, and its production is initiated by the apocrinic formation of HIF-2, colocalized in these same cells.


Assuntos
Nefropatias Diabéticas , Eritropoetina , Policitemia , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Policitemia/metabolismo , Reticulocitose , Nefropatias Diabéticas/metabolismo , Rim/metabolismo , Hipóxia/metabolismo , Glucose/metabolismo , Sódio/metabolismo
2.
Haematologica ; 108(11): 3068-3085, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37317877

RESUMO

Hereditary erythrocytosis is a rare hematologic disorder characterized by an excess of red blood cell production. Here we describe a European collaborative study involving a collection of 2,160 patients with erythrocytosis sequenced in ten different laboratories. We focused our study on the EGLN1 gene and identified 39 germline missense variants including one gene deletion in 47 probands. EGLN1 encodes the PHD2 prolyl 4-hydroxylase, a major inhibitor of hypoxia-inducible factor. We performed a comprehensive study to evaluate the causal role of the identified PHD2 variants: (i) in silico studies of localization, conservation, and deleterious effects; (ii) analysis of hematologic parameters of carriers identified in the UK Biobank; (iii) functional studies of the protein activity and stability; and (iv) a comprehensive study of PHD2 splicing. Altogether, these studies allowed the classification of 16 pathogenic or likely pathogenic mutants in a total of 48 patients and relatives. The in silico studies extended to the variants described in the literature showed that a minority of PHD2 variants can be classified as pathogenic (36/96), without any differences from the variants of unknown significance regarding the severity of the developed disease (hematologic parameters and complications). Here, we demonstrated the great value of federating laboratories working on such rare disorders in order to implement the criteria required for genetic classification, a strategy that should be extended to all hereditary hematologic diseases.


Assuntos
Policitemia , Humanos , Policitemia/diagnóstico , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Mutação em Linhagem Germinativa , Sequência de Bases
3.
EMBO J ; 41(22): e112059, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36219563

RESUMO

Prolyl hydroxylase domain protein 2 (PHD2)-catalyzed modification of hypoxia-inducible factor (HIF)-α is a key event in oxygen sensing. We previously showed that the zinc finger of PHD2 binds to a Pro-Xaa-Leu-Glu (PXLE) motif. Here, we show that the zinc finger binds to this motif in the ribosomal chaperone nascent polypeptide complex-α (NACA). This recruits PHD2 to the translation machinery to cotranslationally modify HIF-α. Importantly, this cotranslational modification is enhanced by a translational pause sequence in HIF-α. Mice with a knock-in Naca gene mutation that abolishes the PXLE motif display erythrocytosis, a reflection of HIF pathway dysregulation. In addition, human erythrocytosis-associated mutations in the zinc finger of PHD2 ablate interaction with NACA. Tibetans, who have adapted to the hypoxia of high altitude, harbor a PHD2 variant that we previously showed displays a defect in zinc finger binding to p23, a PXLE-containing HSP90 cochaperone. We show here that Tibetan PHD2 maintains interaction with NACA, thereby showing differential interactions with PXLE-containing proteins and providing an explanation for why Tibetans are not predisposed to erythrocytosis.


Assuntos
Policitemia , Humanos , Camundongos , Animais , Policitemia/genética , Policitemia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Pró-Colágeno-Prolina Dioxigenase/química , Dedos de Zinco , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
4.
Blood ; 140(22): 2371-2384, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054916

RESUMO

We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.


Assuntos
Eritropoetina , Transtornos Mieloproliferativos , Neoplasias , Policitemia , Humanos , Eritropoese/fisiologia , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Policitemia/metabolismo , Eritropoetina/metabolismo , Transtornos Mieloproliferativos/metabolismo , Células Precursoras Eritroides/metabolismo , Neoplasias/metabolismo , Receptor IGF Tipo 1/metabolismo
5.
Eur J Med Genet ; 65(6): 104493, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35395428

RESUMO

Congenital Erythrocytosis (CE) can be primary or secondary due to the mutations in genes involved in the erythropoietin receptor and oxygen sensing pathway. In this study, 42 patients with 38 unrelated patients and one family (4 patients) who were JAK-2 mutation (both exon 12 and exon 14) negative with high haematocrit values were investigated. The Endogenous Erythroid colony (EEC) assay was performed in all patients, interestingly EEC colonies were high in EPAS1 and EPOR mutated patients compared to non-mutated patients. The sequence analysis of EPAS1 (exon 12), EPO-R (exon-8), VHL (exon-3), and EGLN1 (exon-1) genes in all these patients showed 19% of patients (8/42) had mutations, in exon12 of EPAS1 and exon 8 of EPO-R genes. Two novel missense mutations MW_600850:c.1183G>C, MW_600851:c.1028A>C in EPO-R gene were observed in the study group. One new MW_600849:c.1969C>T nonsense mutation and five MW_619914:c.1715A>G, MW_619915:c.1694G>T, MW_619916:c.1634T>C, MW_600852:c.1771C>G, MW_600848:c.1859G>A novel missense mutations were observed in the EPAS1 gene. Among them, 4 mutations p. (Gln572Arg), p. (Ser565Ile), p. (Ile545Thr), p. (Gln591Glu) in the ODD (Oxygen-dependent degradation) domain of HIF2α, all these variations contributed to the formation of non-functional HIF2α. No mutations were observed in VHL and EGLN1 genes. Using in silico analysis we observed that these mutations contributed to major conformational changes in the HIF2α protein making it non-functional. The mutations in the EPAS1 gene were heterozygous and show autosomal dominant inheritance patterns and we observed in one family. These novel mutations in the EPAS1 (75% (6/8)) and 25% (2/8) EPO-R genes correlating with EEC positivity were observed for the first time in India in CE patients.


Assuntos
Policitemia , Receptores da Eritropoetina , Humanos , Mutação , Oxigênio/metabolismo , Policitemia/congênito , Policitemia/genética , Policitemia/metabolismo , Receptores da Eritropoetina/genética
6.
Blood ; 139(16): 2441-2449, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34411243

RESUMO

Hypoxia-inducible factors (HIFs) were discovered as activators of erythropoietin gene transcription in response to reduced oxygen (O2) availability. O2-dependent hydroxylation of HIFs on proline and asparagine residues regulates protein stability and transcriptional activity, respectively. Mutations in genes encoding components of the O2-sensing pathway cause familial erythrocytosis. Several small-molecule inhibitors of HIF prolyl hydroxylases are currently in clinical trials as erythropoiesis-stimulating agents. HIFs are overexpressed in bone marrow neoplasms, and the development of HIF inhibitors may improve outcomes in these disorders.


Assuntos
Oxigênio , Policitemia , Hematopoese , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Oxigênio/metabolismo , Policitemia/genética , Policitemia/metabolismo
7.
Am J Med Genet A ; 185(11): 3334-3339, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34655169

RESUMO

Hypoxia-inducible factors (HIFs) activate gene transcription in response to reduced O2 availability and play critical roles in development, physiology, and disease pathogenesis. Mutations that dysregulate HIF activity are the genetic basis for tumor predisposition in the von Hippel-Lindau syndrome and excess red blood cell production in hereditary erythrocytosis.


Assuntos
Doenças Genéticas Inatas/genética , Oxigênio/metabolismo , Policitemia/congênito , Doença de von Hippel-Lindau/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Mutação/genética , Policitemia/genética , Policitemia/metabolismo , Policitemia/patologia , Doença de von Hippel-Lindau/metabolismo , Doença de von Hippel-Lindau/patologia
8.
J Mol Med (Berl) ; 99(11): 1655-1666, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480587

RESUMO

The adrenal gland and its hormones regulate numerous fundamental biological processes; however, the impact of hypoxia signaling on adrenal function remains poorly understood. Here, we reveal that deficiency of HIF (hypoxia inducible factors) prolyl hydroxylase domain protein-2 (PHD2) in the adrenal medulla of mice results in HIF2α-mediated reduction in phenylethanolamine N-methyltransferase (PNMT) expression, and consequent reduction in epinephrine synthesis. Simultaneous loss of PHD2 in renal erythropoietin (EPO)-producing cells (REPCs) stimulated HIF2α-driven EPO overproduction, excessive RBC formation (erythrocytosis), and systemic hypoglycemia, which is necessary and sufficient to enhance exocytosis of epinephrine from the adrenal medulla. Based on these results, we propose that the PHD2-HIF2α axis in the adrenal medulla regulates the synthesis of epinephrine, whereas in REPCs, it indirectly induces the release of this hormone. Our findings are also highly relevant to the testing of small molecule PHD inhibitors in phase III clinical trials for patients with renal anemia. KEY MESSAGES: HIF2α and not HIF1α modulates PNMT during epinephrine synthesis in chromaffin cells. The PHD2-HIF2α-EPO axis induces erythrocytosis and hypoglycemia. Reduced systemic glucose facilitates exocytosis of epinephrine from adrenal gland.


Assuntos
Medula Suprarrenal/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epinefrina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Cálcio/metabolismo , Eritropoetina/metabolismo , Feminino , Hipoglicemia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Masculino , Camundongos Transgênicos , Feniletanolamina N-Metiltransferase/genética , Feniletanolamina N-Metiltransferase/metabolismo , Policitemia/metabolismo , Células Tumorais Cultivadas
9.
Am J Med Genet A ; 185(8): 2576-2581, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33973706

RESUMO

Hypoxia-inducible factors (HIFs) activate gene transcription in response to reduced O2 availability and play critical roles in development, physiology, and disease pathogenesis. Mutations that dysregulate HIF activity are the genetic basis for tumor predisposition in the von Hippel-Lindau syndrome and excess red blood cell production in hereditary erythrocytosis.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Predisposição Genética para Doença , Oxigênio/metabolismo , Fenótipo , Biomarcadores , Diagnóstico Diferencial , Doenças Genéticas Inatas/diagnóstico , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Policitemia/congênito , Policitemia/diagnóstico , Policitemia/metabolismo , Transdução de Sinais , Doença de von Hippel-Lindau/diagnóstico , Doença de von Hippel-Lindau/genética , Doença de von Hippel-Lindau/metabolismo
10.
Blood ; 137(18): 2509-2519, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33512384

RESUMO

Polycythemia and pulmonary hypertension are 2 human diseases for which better therapies are needed. Upregulation of hypoxia-inducible factor-2α (HIF-2α) and its target genes, erythropoietin (EPO) and endothelin-1, causes polycythemia and pulmonary hypertension in patients with Chuvash polycythemia who are homozygous for the R200W mutation in the von Hippel Lindau (VHL) gene and in a murine mouse model of Chuvash polycythemia that bears the same homozygous VhlR200W mutation. Moreover, the aged VhlR200W mice developed pulmonary fibrosis, most likely due to the increased expression of Cxcl-12, another Hif-2α target. Patients with mutations in iron regulatory protein 1 (IRP1) also develop polycythemia, and Irp1-knockout (Irp1-KO) mice exhibit polycythemia, pulmonary hypertension, and cardiac fibrosis attributable to translational derepression of Hif-2α, and the resultant high expression of the Hif-2α targets EPO, endothelin-1, and Cxcl-12. In this study, we inactivated Hif-2α with the second-generation allosteric HIF-2α inhibitor MK-6482 in VhlR200W, Irp1-KO, and double-mutant VhlR200W;Irp1-KO mice. MK-6482 treatment decreased EPO production and reversed polycythemia in all 3 mouse models. Drug treatment also decreased right ventricular pressure and mitigated pulmonary hypertension in VhlR200W, Irp1-KO, and VhlR200W;Irp1-KO mice to near normal wild-type levels and normalized the movement of the cardiac interventricular septum in VhlR200Wmice. MK-6482 treatment reduced the increased expression of Cxcl-12, which, in association with CXCR4, mediates fibrocyte influx into the lungs, potentially causing pulmonary fibrosis. Our results suggest that oral intake of MK-6482 could represent a new approach to treatment of patients with polycythemia, pulmonary hypertension, pulmonary fibrosis, and complications caused by elevated expression of HIF-2α.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Regulação da Expressão Gênica/efeitos dos fármacos , Hipertensão Pulmonar/prevenção & controle , Proteína 1 Reguladora do Ferro/fisiologia , Policitemia/prevenção & controle , Sulfonas/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Animais , Endotelina-1/antagonistas & inibidores , Endotelina-1/genética , Endotelina-1/metabolismo , Eritropoetina/antagonistas & inibidores , Eritropoetina/genética , Eritropoetina/metabolismo , Feminino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Policitemia/etiologia , Policitemia/metabolismo , Policitemia/patologia
11.
Placenta ; 105: 7-13, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33497931

RESUMO

INTRODUCTION: Recent reports suggest SARS-CoV-2, the virus causing COVID-19, may be transmittable from pregnant mother to placenta and fetus, albeit rarely. The efficacy of vertical transmission of SARS-CoV-2 critically depends on the availability of its receptor, ACE2, in the placenta. In the present study, we tested the hypothesis that placental ACE2 expression is oxygenation-dependent by studying the expression of ACE2 and associated cell entry regulators in the monochorionic twin anemia-polycythemia (TAPS) placenta, a model of discordant placental oxygenation. METHODS: We performed a retrospective comparative immunohistochemical, immunofluorescence and Western blot analysis of ACE2, TMPRSS2 and Cathepsin B expression in anemic and polycythemic territories of TAPS placentas (N = 14). RESULTS: ACE2 protein levels were significantly higher in the anemic twin territories than in the corresponding polycythemic territories, associated with upregulation of the key ACE2-related cell entry regulators, TMPRSS2 and Cathepsin B, immunolocalized to villous trophoblastic and stromal cells. Cellular colocalization of ACE2 and TMPRSS2, suggestive of functionality of this cell entry axis, was demonstrated by double immunofluorescence studies. DISCUSSION: Placental hypoxia is associated with upregulation of ACE2 expression, concomitant with increased expression of its key cell entry proteases. ACE2-regulated placental functions, both infection- and non-infection related, may be highly oxygenation-dependent.


Assuntos
Anemia/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Doenças Fetais/metabolismo , Hipóxia/metabolismo , Placenta/metabolismo , Policitemia/metabolismo , Gravidez de Gêmeos , Adulto , Anemia/complicações , Anemia/patologia , Estudos de Casos e Controles , Estudos de Coortes , Doenças em Gêmeos/metabolismo , Doenças em Gêmeos/patologia , Feminino , Doenças Fetais/patologia , Humanos , Hipóxia/complicações , Hipóxia/patologia , Imuno-Histoquímica , Recém-Nascido , Masculino , Placenta/patologia , Policitemia/complicações , Policitemia/patologia , Gravidez , Gravidez de Gêmeos/metabolismo , Estudos Retrospectivos , SARS-CoV-2/metabolismo , Serina Endopeptidases/metabolismo , Regulação para Cima
12.
Exp Mol Med ; 53(1): 125-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33473144

RESUMO

Monge's disease (chronic mountain sickness (CMS)) is a maladaptive condition caused by chronic (years) exposure to high-altitude hypoxia. One of the defining features of CMS is excessive erythrocytosis with extremely high hematocrit levels. In the Andean population, CMS prevalence is vastly different between males and females, being rare in females. Furthermore, there is a sharp increase in CMS incidence in females after menopause. In this study, we assessed the role of sex hormones (testosterone, progesterone, and estrogen) in CMS and non-CMS cells using a well-characterized in vitro erythroid platform. While we found that there was a mild (nonsignificant) increase in RBC production with testosterone, we observed that estrogen, in physiologic concentrations, reduced sharply CD235a+ cells (glycophorin A; a marker of RBC), from 56% in the untreated CMS cells to 10% in the treated CMS cells, in a stage-specific and dose-responsive manner. At the molecular level, we determined that estrogen has a direct effect on GATA1, remarkably decreasing the messenger RNA (mRNA) and protein levels of GATA1 (p < 0.01) and its target genes (Alas2, BclxL, and Epor, p < 0.001). These changes result in a significant increase in apoptosis of erythroid cells. We also demonstrate that estrogen regulates erythropoiesis in CMS patients through estrogen beta signaling and that its inhibition can diminish the effects of estrogen by significantly increasing HIF1, VEGF, and GATA1 mRNA levels. Taken altogether, our results indicate that estrogen has a major impact on the regulation of erythropoiesis, particularly under chronic hypoxic conditions, and has the potential to treat blood diseases, such as high altitude severe erythrocytosis.


Assuntos
Doença da Altitude/sangue , Eritrócitos/efeitos dos fármacos , Estrogênios/farmacologia , Policitemia/metabolismo , Doença da Altitude/metabolismo , Células Cultivadas , Eritrócitos/metabolismo , Estrogênios/metabolismo , Feminino , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Policitemia/sangue , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Life Sci ; 266: 118873, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33309718

RESUMO

AIMS: Hypoxia-inducible factors (HIFs) play important roles in the pathogenesis of erythrocytosis in chronic mountain sickness (CMS). von Hippel-Lindau (VHL) is a key regulator of hypoxia that can direct the poly-ubiquitylation and degradation of HIFs. Epigenetic mechanisms are believed to contribute toward adaption to chronic hypoxia. Here, we investigated the contribution and mechanism of VHL methylation in rats with erythrocytosis in CMS. MAIN METHODS: The methylation status of VHL was measured via bisulfite sequencing PCR, while VHL, DNMT1, DNMT3α, and DNMT3ß expression were assessed using real-time reverse transcription PCR and western blotting. HIF-2α and EPO expression levels in bone marrow were determined via immunohistochemical staining, and erythroid hyperplasia in bone marrow sections were observed with hematoxylin and eosin staining. KEY FINDINGS: We found that chronic hypoxia triggered erythroid hyperplasia in the bone marrow and increased the quantity of peripheral red blood cells in CMS rats. Chronic hypoxia significantly induced methylation at the CpG site in the VHL promoter, decreased VHL expression, and increased HIF-2α and EPO expression. Chronic hypoxia increased DNMT3α and DNMT3ß expression, consistent with the decrease in VHL expression. The DNA methyltransferase inhibitor 5-azacytidine reduced chronic hypoxia-induced erythroid proliferation in the bone marrow of rats with CMS by suppressing VHL methylation and DNMTs expression. SIGNIFICANCE: Our study suggests that VHL methylation contributes toward excessive erythrocytosis in CMS by upregulating the HIF-2α/EPO pathway in the bone marrow of rats. We demonstrated that the DNMT inhibitor 5-azacytidine can attenuate erythroid hyperplasia in the bone marrow by demethylating the VHL promoter.


Assuntos
Doença da Altitude/fisiopatologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Metilação de DNA , Eritropoetina/metabolismo , Hipóxia/fisiopatologia , Policitemia/patologia , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Doença Crônica , Modelos Animais de Doenças , Eritropoetina/genética , Regulação da Expressão Gênica , Masculino , Policitemia/genética , Policitemia/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor Von Hippel-Lindau/genética
14.
Proteomics ; 20(14): e1900423, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32468662

RESUMO

High-altitude polycythemia (HAPC) is a common plateau chronic disease in which red blood cells are compensatory hyperproliferative due to high altitude hypoxic environment. HAPC severely affects the physical and mental health of populations on the plateau. However, the pathogenesis and treatment of HAPC has been rarely investigated. Here, the hypoxia-induced HAPC model of rat is established, in which hemoglobin concentration significantly increases and platelets clearly decrease. The effect of resveratrol upon hypoxia enables HAPC remission and makes hemoglobin and platelet tend to a normal level. Furthermore, quantitative proteomics is applied to investigate the plasma proteome variation and the underlying molecular regulation during HAPC occurrence and treatment with resveratrol. Hypoxia promotes erythrocyte developing and differentiating and disrupts cytoskeleton organization. Notably, the resveratrol administration reverses the proteome change pattern due to hypoxia and contributes to plateau adaption. Quantitative verification of differentially expressed proteins confirms the roles of resveratrol in HAPC. Resveratrol is expected to be useful for HAPC treatment.


Assuntos
Doença da Altitude/complicações , Altitude , Hipóxia/fisiopatologia , Policitemia/tratamento farmacológico , Proteoma/metabolismo , Resveratrol/farmacologia , Transcriptoma/efeitos dos fármacos , Adaptação Fisiológica , Animais , Antioxidantes/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Masculino , Policitemia/etiologia , Policitemia/metabolismo , Policitemia/patologia , Proteoma/análise , Proteoma/efeitos dos fármacos , Ratos , Ratos Wistar
15.
Circ Res ; 127(2): e1-e13, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32268833

RESUMO

RATIONALE: Chronic exposure to hypoxia is associated with elevated sympathetic nervous activity and reduced vascular function in lowlanders, and Andean highlanders suffering from excessive erythrocytosis (EE); however, the mechanistic link between chronically elevated sympathetic nervous activity and hypoxia-induced vascular dysfunction has not been determined. OBJECTIVE: To determine the impact of heightened sympathetic nervous activity on resistance artery endothelial-dependent dilation (EDD), and endothelial-independent dilation, in lowlanders and Andean highlanders with and without EE. METHODS AND RESULTS: We tested healthy lowlanders (n=9) at sea level (344 m) and following 14 to 21 days at high altitude (4300 m), and permanent Andean highlanders with (n=6) and without (n=9) EE at high altitude. Vascular function was assessed using intraarterial infusions (3 progressive doses) of acetylcholine (ACh; EDD) and sodium nitroprusside (endothelial-independent dilation) before and after local α+ß adrenergic receptor blockade (phentolamine and propranolol). Intraarterial blood pressure, heart rate, and simultaneous brachial artery diameter and blood velocity were recorded at rest and during drug infusion. Changes in forearm vascular conductance were calculated. The main findings were (1) chronic hypoxia reduced EDD in lowlanders (changes in forearm vascular conductance from sea level: ACh1: -52.7±19.6%, ACh2: -25.4±38.7%, ACh3: -35.1±34.7%, all P≤0.02); and in Andeans with EE compared with non-EE (changes in forearm vascular conductance at ACh3: -36.4%, P=0.007). Adrenergic blockade fully restored EDD in lowlanders at high altitude, and normalized EDD between EE and non-EE Andeans. (2) Chronic hypoxia had no effect on endothelial-independent dilation in lowlanders, and no differences were detected between EE and non-EE Andeans; however, EID was increased in the non-EE Andeans after adrenergic blockade (P=0.012), but this effect was not observed in the EE Andeans. CONCLUSIONS: These data indicate that chronic hypoxia reduces EDD via heightened α-adrenergic signaling in lowlanders and in Andeans with EE. These vascular mechanisms have important implications for understanding the physiological consequences of acute and chronic high altitude adaptation.


Assuntos
Adaptação Fisiológica , Doença da Altitude/metabolismo , Policitemia/metabolismo , Receptores Adrenérgicos/metabolismo , Vasodilatação , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Adrenérgicos/farmacologia , Adulto , Altitude , Doença da Altitude/sangue , Doença da Altitude/fisiopatologia , Pressão Sanguínea , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatologia , Frequência Cardíaca , Humanos , Masculino , Nitroprussiato/farmacologia , Fentolamina/farmacologia , Policitemia/etiologia , Policitemia/fisiopatologia , Propranolol/farmacologia , Transdução de Sinais , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Vasodilatadores/farmacologia
16.
Placenta ; 90: 9-17, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056557

RESUMO

BACKGROUND: (Macro)autophagy is an important process of self-degradation of macromolecules and organelles that ensures cellular homeostasis and energy preservation during stressful conditions. Dysregulated placental autophagy has been implicated in a wide range of pregnancy complications. Recent studies identified hypoxia as a key regulator of trophoblast autophagy in vitro; however, its effects on placental autophagy in vivo remain incompletely understood. In this study, we evaluated the monochorionic twin anemia-polycythemia sequence (TAPS) placenta as model of discordant placental oxygenation to determine the effects of hypoxia on placental autophagy in utero. METHODS: We performed a retrospective comparative analysis of tissue oxygenation and autophagy in anemic and polycythemic territories of TAPS placentas (N = 12). Archival tissues were subjected to immunohistochemical, immunofluorescence and Western blot analyses of carbonic anhydrase (CA) IX (hypoxia marker) and key autophagy/lysosomal markers. RESULTS: CAIX protein levels were significantly higher in anemic twin territories than in corresponding polycythemic territories, consistent with relative tissue hypoxia. Anemic placental shares further displayed significantly higher levels of LC3I/II (autophagosome markers) and LAMP1/2 (lysosome markers), associated with upregulated expression of lysosome/autophagosome activity-associated markers, transcription factor EB and cathepsin D. The accumulation of autophagosomes and lysosomes in anemic shares was accompanied by elevated p62 protein expression, suggestive of inhibition of the downstream autophagy pathway. CONCLUSIONS: TAPS placentas display striking intertwin discordance in tissue oxygenation and autophagic activity and may provide a suitable model for study of the interrelationship between hypoxia, autophagy, and pregnancy outcome in a monochorionic twin setting.


Assuntos
Anemia/etiologia , Autofagia/fisiologia , Transfusão Feto-Fetal/complicações , Placenta/metabolismo , Policitemia/etiologia , Anemia/metabolismo , Feminino , Transfusão Feto-Fetal/metabolismo , Idade Gestacional , Humanos , Policitemia/metabolismo , Gravidez , Estudos Retrospectivos
17.
Am J Respir Cell Mol Biol ; 62(1): 87-94, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31310562

RESUMO

Desquamative interstitial pneumonia (DIP) is a rare, smoking-related, diffuse parenchymal lung disease characterized by marked accumulation of alveolar macrophages (AMs) and emphysema, without extensive fibrosis or neutrophilic inflammation. Because smoking increases expression of pulmonary GM-CSF (granulocyte/macrophage-colony stimulating factor) and GM-CSF stimulates proliferation and activation of AMs, we hypothesized that chronic exposure of mice to increased pulmonary GM-CSF may recapitulate DIP. Wild-type (WT) mice were subjected to inhaled cigarette smoke exposure for 16 months, and AM numbers and pulmonary GM-CSF mRNA levels were measured. After demonstrating that smoke inhalation increased pulmonary GM-CSF in WT mice, transgenic mice overexpressing pulmonary GM-CSF (SPC-GM-CSF+/+) were used to determine the effects of chronic exposure to increased pulmonary GM-CSF (without smoke inhalation) on accumulation and activation of AMs, pulmonary matrix metalloproteinase (MMP) expression and activity, lung histopathology, development of polycythemia, and survival. In WT mice, smoke exposure markedly increased pulmonary GM-CSF and AM accumulation. In unexposed SPC-GM-CSF+/+ mice, AMs were spontaneously activated as shown by phosphorylation of STAT5 (signal inducer and activator of transcription 5) and accumulated progressively with involvement of 84% (interquartile range, 55-90%) of the lung parenchyma by 10 months of age. Histopathologic features also included scattered multinucleated giant cells, alveolar epithelial cell hyperplasia, and mild alveolar wall thickening. SPC-GM-CSF+/+ mice had increased pulmonary MMP-9 and MMP-12 levels, spontaneously developed emphysema and secondary polycythemia, and had increased mortality compared with WT mice. Results show cigarette smoke increased pulmonary GM-CSF and AM proliferation, and chronically increased pulmonary GM-CSF recapitulated the cardinal features of DIP, including AM accumulation, emphysema, secondary polycythemia, and increased mortality in mice. These observations suggest pulmonary GM-CSF may be involved in the pathogenesis of DIP.


Assuntos
Doenças Genéticas Inatas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Enfisema/metabolismo , Células Epiteliais/metabolismo , Hiperplasia/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Policitemia/metabolismo , Fator de Transcrição STAT5/metabolismo , Fumar/metabolismo
18.
Blood Rev ; 37: 100590, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31350093

RESUMO

Identification of the underlying defects in congenital erythrocytosis has provided mechanistic insights into the regulation of erythropoiesis and oxygen homeostasis. The Hypoxia Inducible Factor (HIF) pathway plays a key role in this regard. In this pathway, an enzyme, Prolyl Hydroxylase Domain protein 2 (PHD2), constitutively prolyl hydroxylates HIF-2α, thereby targeting HIF-2α for degradation by the von Hippel Lindau (VHL) tumor suppressor protein. Under hypoxia, this modification is attenuated, resulting in the stabilization of HIF-2α and transcriptional activation of the erythropoietin (EPO) gene. Circulating EPO then binds to the EPO receptor (EPOR) on red cell progenitors in the bone marrow, leading to expansion of red cell mass. Loss of function mutations in PHD2 and VHL, as well as gain of function mutations in HIF-2α and EPOR, are well established causes of erythrocytosis. Here, we highlight recent developments that show that the study of this condition is still evolving. Specifically, novel mutations have been identified that either change amino acids in the zinc finger domain of PHD2 or alter splicing of the VHL gene. In addition, continued study of HIF-2α mutations has revealed a distinctive genotype-phenotype correlation. Finally, novel mutations have recently been identified in the EPO gene itself. Thus, the cascade of genes that at a molecular level leads to EPO action, namely PHD2 - > HIF2A - > VHL - > EPO - > EPOR, are all mutational targets in congenital erythrocytosis.


Assuntos
Eritropoetina/genética , Fator 1 Induzível por Hipóxia/genética , Policitemia/metabolismo , Humanos , Mutação
19.
Biomed Res Int ; 2019: 6317015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001558

RESUMO

BACKGROUND: Living at a high plateau in a very hostile environment and low oxygen levels often leads to the development of high-altitude polycythemia (HAPC) and gastric mucosal lesions caused by high-level reactive oxygen species (ROS). Hypoxia-inducible factor-1A (HIF-1A) helps maintain oxygen homeostasis by promoting the transcription of various genes and can be affected by ROS levels. To evaluate the molecular mechanism by which HAPC causes the gastric mucosal lesions, the expression of HIF-1A was measured in Tibetans with HAPC and in healthy subjects. Ultrastructural, histopathological, and immunohistochemical analyses were performed in the gastric tissues of both groups, and the expression of HIF-1A in the gastric mucosa was detected using qPCR and Western Blot. RESULTS: The microvessel density and average diameter of gastric mucosal vessels were significantly greater in the HAPC patients than in the healthy subjects (p < 0.05). The number of red blood cells in the gastric mucosa was also significantly higher in the HAPC group than in the healthy subjects (p < 0.05). In addition, the density of the mitochondrial vacuoles and endoplasmic reticulum and pathological apoptosis were significantly increased in the gastric cells from HAPC patients compared to those from the healthy subjects. The levels of ROS and HIF-1A in the gastric mucosa were increased in HAPC patients compared to those in controls (p < 0.05). CONCLUSIONS: An increased level of HIF-1A was associated with HAPC development in the stomach of Tibetans living at a high altitude. ROS upregulated the levels of HIF-1A. Thus, ROS-mediated HIF-1A signaling transduction may be the mechanism associated with HAPC-induced gastric lesions.


Assuntos
Doença da Altitude/metabolismo , Mucosa Gástrica/metabolismo , Regulação da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Policitemia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adulto , Doença da Altitude/patologia , Feminino , Mucosa Gástrica/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Policitemia/patologia , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...